![](http://uimg.gbs.cn/upload/user/yndlkj/202111021029387148.jpg?x-oss-process=style/gbs860)
2025欢迎访问##岳阳STD-620h数字式变压器保护与测控装置厂家
湖南盈能电力科技有限公司,专业仪器仪表及自动化控制设备等。电力电子元器件、高低压电器、电力金具、电线电缆技术研发;防雷装置检测;仪器仪表,研发;消防设备及器材、通讯终端设备;通用仪器仪表、电力电子元器件、高低压电器、电力金具、建筑材料、水暖器材、压力管道及配件、工业自动化设备销;自营和各类商品及技术的进出口。
的产品、的服务、的信誉,承蒙广大客户多年来对我公司的关注、支持和参与,才铸就了湖南盈能电力科技有限公司在电力、石油、化工、铁道、冶金、公用事业等诸多领域取得的辉煌业绩,希望在今后一如既往地得到贵单位的鼎力支持,共同创更加辉煌的明天!
如果要对它们测量这类信号的能力进行评估,首先要有一台能产生这类信号的设备,市场上能输出这类信号的设备较少且价格昂贵。若使用信号发生器,频率范围通常都能满足要求,但信号发生器的输出电流较小,不足以直接驱动阻抗较低的电磁线圈;所以在普通的信号发生器与电磁线圈之间接入宽带功率放大器是一种较好的选择。以数字钳形表为例的测量系统示意图如下所示:测量原理如下:数字钳形表对交流电流的测量,实际上是利用磁感应线圈组成的钳头,去感应电磁线圈的磁场变化(磁通量变化),并产生相应的感应电动势(电压信号)到钳形表的采样电路,钳形表根据测量电压的大小计算电磁线圈的磁通量,而电磁线圈的磁通量变化大小与线圈通过的信号电流成正比,因此钳形表根据测量感应电压大小计算信号电流;根据欧姆定律可知,电磁线圈的信号电流为:线圈绕组两端电压/线圈绕组总阻抗,故测试所需的信号频率和信号电流的大小可以通过设置信号发生器频率和幅度来改变。
如欠压测试项目(V<5%V标称),电压从标称电压下降至标称电压的5%以下,需要时间是1mS。即可在全天科技可编程交流电源中List模式中设置(如下图)V(acstart)=22V,V(acen=19V,Time=1mS;编辑电压变化步骤后保存,触发启动List程序,可编程交流电源自动执行输出。过欠频测试项目测试逆变器在规定的频率范围内(电压正常的情况下)是否可以正常工作;在规定的频率范围段,逆变器正常运行规定的时间后,停止并网供电;在规定的频率范围外则认为电网频率异常,并网逆变器停止工作。
所有DAC之间的共性就是技术规格的定义以及说明。这篇文章将会论述静态DAC技术规格。静态DAC技术规格包括对DAC在DC域中所具有的特性的描述。在DC域中时,DAC的数字与模拟定时现象不属于这一组技术规格。虽然这3个DAC拓扑互不相同,但它们的技术规格与电气描述非常类似。一个主要的静态DAC技术规格就是理想转换函数()。在对这个普通转换函数的图示中,可以轻松地体会和理解零代码、偏移、满量程以及增益的定义。
此外,为了实现高波长分辨率,这个方法需要小区域探测器。较小的探测器区域能够减少总体光采集,并因此降低了灵敏度。在第二种方法中,衍射光栅和聚焦目标的位置是固定的,并且色散光聚焦在一个探测器的线性阵列上。由于这些波长在空间上被光栅隔离来,探测器阵列中的每个探测器采集小波长范围内的光,而作为离散波长函数的功率的获得方法与在数码相机上进行图像采集的方法相类似。这就免除了对于机械系统和精密同步电子元器件的需要。
:用可控硅供电,其谐波分量使泄漏电流增大。若考核的是一个电路或一个系统的绝缘性能,则这个电流除了包括所有通过绝缘物质而流入大地(或电路外可导电部分)的电流外,还应包括通过电路或系统中的电容性器件(分布电容可视为电容性器件)而流入大地的电流。较长布线会形成较大的分布容量,增大泄漏电流,这一点在不接地系统中应特别引起注意。测量泄漏电流的原理测量与绝缘电阻基本相同,测量绝缘电阻实际上也是一种泄漏电流,只不过是以电阻形式表示出来的。
大陆封测产业的机遇摩尔定律由英特尔创始人之一戈登摩尔提出,大致意思为,每隔18-24个月在价格不变的情况下,集成电路上可容纳的元器件数目会翻一倍,性能也将提升一倍。这一定律统治了半导体产业50多年,近些年却屡屡被预估将要走向终结,而预测者中甚至包括摩尔本人。而这条金科玉律走向末路的佐证之一便是英特尔修改了基于摩尔定律的“Tick-Tock”策略,将这一架构和工艺交替升级策略的研发周期在时间上从两年延长至三年,制程工艺变为三代一升级,并且其10nm制程一直跳票。
目前世界范围内浆和纸的产量和质量正不断增长,若仅仅依靠 的纤维原料和制浆造纸工艺来促进生产是不够的,还必须研制和使用一些新型的过程分析仪器和传感器。随着近红外光谱技术和光谱数据软件的发展,为发新型的过程分析仪器了新的途径。下面介绍的NIR在制浆造纸过程中的应用,虽然绝大部分应用情况目前仍然局限于实验室内,但将来的发展趋势必定为现场分析和测控,实现从实验室走向生产现场的转变。检测纸页涂料中的水分含量在4~11nm的范围内,采用透过模式,分析涂料混合物中的水分含量。